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A general hierarchy of the coarsed-grained electron probability distributions induced by exhaustive partitions
of the physical space is presented. It is argued that when the space is partitioned into atomic regions the
consideration of these distributions may provide a first step toward an orbital invariant treatment of resonant
structures. We also show that, in this case, the total molecular energy and its components may be partitioned
into structure contributions, providing a fruitful extension of the recently developed interacting quantum atoms
approach (J. Chem. Theory Comput.2005, 1, 1096). The above ideas are explored in the hydrogen molecule,
where a complete statistical and energetic decomposition into covalent and ionic terms is presented.

I. Introduction

Real space analyses of wavefunctions have grown over the
years into recognized alternatives to orbital theories of the
chemical bond.1 After all, chemistry is still being taught as
something that takes place in the physical, not the Hilbert,
space.

A central tenet of many of these techniques is the existence
of regions in space that are to be identified with chemically
meaningful concepts, i.e., atoms, bonds, cores, lone pairs, etc.
In many of these descriptions, this is done by exhaustively
partitioning the 3D space into appropriately defined domains.
In others, these regions, usually atoms, are allowed to penetrate
each other, and each point in space is shared by many of the
elements according to well-defined rules (see ref 2, for instance,
for a discussion of some particular implementations of exhaus-
tive and fuzzy prescriptions).

Fuzzy atomic decompositions are not completely compatible
with a pure real space viewpoint. Using only spatial require-
ments, once the position of a given electron is determined the
indistinguishability principle should prevent us from recovering
its original affiliation and assign it to atom A or atom B with
given probabilities. To avoid these kinds of problems, electrons
should be associated to spatial regions using geometrical criteria,
leading to exhaustive partitions of the physical space.

These are usually obtained from the topologies induced by
the gradient fields of appropriate scalar fields. Two well
developed examples of nonfuzzy decompositions are based on
the attraction basins of (i) the charge densityF, an approach
which becomes the quantum theory of atoms in molecules
(QTAM), extensively developed by Bader and co-workers;3 and
(ii) the electron localization function (ELF) of Becke and
Edgecombe4 which has been thoroughly studied in the past
decade by Savin,5-10 Silvi,11-13 and others.14

The aim of this paper is twofold. First we will show how to
define coarse grained probability distributions from exhaustive
topological partitions ofR3 in molecules. We think that they
provide a first step in the investigation of Pauling’s concept of
resonance within an orbital invariant formalism. In order to do

so, we will identify each possible partition of theN electrons
of the molecule into them nuclei as a resonant structure. This
does not cover all of the resonance definitions proposed over
the years, but we may consider the analogy as a good starting
point. Second, we will show how to decompose the molecular
energy into resonant contributions, a procedure not exempt from
a certain degree of arbitrariness. Our work is reminiscent of
the theory of loges proposed long ago by Daudel.15-17 In fact,
there are recent relevant developments along similar lines, as
we will briefly comment on below.18,19

The rest of the paper is organized as follows. In section II,
we define the coarse grained distributions and several magni-
tudes that are used throughout the paper. Section III deals with
the resonant structure energetic decomposition, and section IV
applies all of the former ideas to the simplest H2 molecule,
commenting upon the fruitful relationship between the present
results and those of the interacting quantum atoms (IQA)
approach to the chemical bond. The latter is a recently proposed
energy decomposition scheme completely compatible with the
QTAM.20-22 We will end with some conclusions.

II. Basic Definitions

Any exhaustive partitionP of the 3D space may be envisaged
as a coarse-grained mapping of the setr ∈ R3 onto the set of
mutually exclusive basins of the partitionΩi such thatP : r f
Ωi, r ∈ Ωi. All points belonging to a given basin are then
replaced by the basin itself. This coarse-graining may be
translated, either partially or totally, to theN-electron density
matrix (DM), or probability densityFN(1, ..., N) ) Ψ* (1, ...,
N)Ψ(1, ..., N), to define coarse-grained density matrices
(CGDMs). To that end, it is convenient to introduceΩh i (or
simply ıj) as the complement of theΩi (or simply i) basin.
Coarse-graining the electrons of the system in real space is
then equivalent to averaging the positions of some (partial
condensation) or all (total condensation) of the electrons over
a set of basins of the 3D partition. Total condensation provides
a partition of the electron system into basins. If the latter are
associated to nuclei, as done by using the QTAM,3 the partition
of theN electrons into themnuclei of the molecule will provide
our real space image of a resonant structure.* To whom correspondence should be addressed.
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Let us then coarse-grain (or condense, or basin average) the
generalFN. We will consider a finite number of basins 1, ...,m
ordered in some prescribed canonical wayΩ1, ...,Ωm, such that
Ω1 ∪ ... ∪ Ωm ) R3. The extension to an infinite number of
basins (as is the case in crystals) is done easily. Now we will
condensec1, ..., cm electrons over each of the basinsΩ1, ...,
Ωm. Notice that any of these numbers may be zero, that all of
the basins are mutually exclusive, and that the total number of
condensed electrons needs not exhaustN, c1 + ... + cm ) N e
N. The remaining non-condensedi ) N - N electrons are
situated at ther1, ..., r i positions. Each of these positions
necessarily belongs to a basin (save the null measure set formed
by basin boundaries, with no consequences), and we will specify
it by a superindex when necessary, for instance,r1

R, r2
â, etc,

whereR needs not beΩ1, etc. The total number of electrons
within a general basinR (nR) is given by the sum of the number
of condensed (cR) and free (fR) electrons in it (nR ) cR + fR). A
coarse-graining or condensationC is a partition of theN ) N
- i electron system into basins, determined by the vector ofm
ordered integersC ) (c1, ..., cm), with cj ) cΩj. Similarly, the
basin adscription of the free electrons is specified by aF vector,
F ) (f1, ..., fm), with fj ) fΩj. The S ) C + F ) (n1, ..., nm)
object, describing the total number of electrons in each basin is
called a (resonant) structure. In these expressions,cj, fj, andnj

refer tocΩj, fΩj, andnΩj, respectively, and no confusion between
canonically ordered basins, associated with subindices, and
general basins, labeled with superindices, should arise. For
completeness,∑jfj ) i, ∑jcj ) N, and ∑jnj ) N. Boldface
symbols will only be used when their vector realization needs
be highlighted.

Taken together, the CGDM describing the probability of such
condensed configurations will be anith order DM, and we will
use a notation in which noncondensed electron positions are
written in parenthesis, as usual, and the condensation inside
brackets. If the basin asssociated to each free position is also
specified, we will give the structure in brackets. In this notation
Fi(r1, ..., r i)[C] describes the probabiliy density that any set of
i electrons be located atr1, ..., r i, within condensationC, and
Fi(r1

R, ..., r i
ι)[C], the same object with respect to structureS ) C

+ F, where we should note thatF is also determined by ther1
R,

..., r i
ι) set. Care should be taken on the physical interpretation

of structure CGDMs. Each basin (e.g.,R) contains a fixed
integer number of electrons, condensed and not condensed. This
means that the apparently continuous variablesr1, ..., ri cannot
cross the boundaries of their associated basins and enter others.
When this happens, a change occurs inF, and thus inS, but
not in the condensationC, and that is why CGDMs are to be
labeled withC. Other definitions of CGDMs are possible, but
as our interest in this paper is focused on resonant structures,
we will stay with the above constraints.

Taking into account the indistinguishability of the full set of
electrons, we may write

whereDC is a domain such that electrons (i + 1) to (i + c1) are
integrated over basinΩ1, electrons (i + c1 + 1) to (i + c1 +
c2) over basinΩ2, etc, until each of the condensed electrons
has been integrated over its associated basin.I )
N!/(i!c1‚ ‚ ‚cm!) is the indistinguishability factor taking care of
all permutations among equivalent groups of electrons.

Transition DMs may also be coarse-grained in a similar
manner

Since all subsequent definitions regarding transition DMs may
be obtained straightforwardly from the previous ideas, we will
not comment further on them.

It may be shown that the traditional total reduced DMs are
obtained by adding the above CGDMs over all possible
condensations ofN ) N - i electrons

It is also to be noticed that any CGDM may be obtained by a
suitable combination of the set here described.

The zeroth order total DM, obtained when only one basin is
considered, and so withC ≡ S) (N), andΩ1 ) R3, is F0()[N]
) 1, and keeps no relevant information, being a consequence
of normalization or conservation of the number of electrons.
Their equivalent zeroth-order CGDMs, however, provide the
coarse-grained probability distributions (CGPDs) of the set of
electrons into basins. We will usep instead ofF0() and will
notice that condensations and structures are equivalent in this
case. Thus

is the probability of finding theN electrons distributed according
to S ≡ C. Every CGDM may be normalized according to its
associated CGPD to construct conditional measures. For instance

is the conditional probability of finding any electron in basinR
within structureS, with anF vector which has only one element
different from zero (and equal to 1) for basinR. This magnitude
integrates tonR ) cR + 1, the number of electrons in the basin.

It is many times relevant to consider only a subset ofk basins
(R, ...,κ) out of them basins in the original partition. This may
be done by considering a new partitioning composed ofk + 1
basins: the subset of interest plus a new basin formed by the
union of the rest in the original set. For instance, indicating
explicitly the number and basin occupied by each set of electrons

with N ′ ) nR + ... + nκ < N, and A ) R∪ ... ∪κ, is the
probability that exactlynR, ..., nκ electrons lie within theR, ...,
κ basins,k < m, respectively. It must be stressed again that the
nR, ..., nκ labels do not necessarily keep the canonical order,
and should therefore not be confused with theni’s used before,
that do keep that order.

Particularly interesting are the one-basin electron distribution
functions,p(nR), 0 e nR e N. These have been studied by Savin
and co-workers,23-25 who have shown with clever algebraic
rearrangements that they may be obtained easily from basin
overlap matrices in monodeterminantal cases. Thep(nR) values
obtained in simple molecules behave in a Gaussian manner and,
in some simple circumstances, correspond faithfully to binomial
distributions that point toward the almost independency of the
electrons under scrutiny. Once we have a full distribution
function, any basin population average may be obtained from
thep(nR) set. For instance, the average number of electrons in

Fi(r′1, . . . , r′i; r1, . . . , r i)[C] ) I∫DC
dr i+1 . . . drN

FN(1′. . . , i′, i + 1 . . .N; 1 . . . , i, i + 1 . . .N) (2)

Fi(r1, . . . , r i) ) ∑
{C}

Fi(r1, . . . , r i)[C] (3)

p(S) ) F0()[S≡ C] ) p(n1, ...,nm) (4)

F(r1
R|S) )

F(r1
R)[S - F]

p(S)
(5)

p(nR, ...,nκ) ) F0[n
R, ...,nκ,(N - N ′)Ah] (6)

Fi(r1, ..., r i)[C] ) I∫DC
dr i+1 . . . drN FN(1, . . . ,N), (1)
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basinR, 〈N〉R, is 〈N〉R ) ∑n)0
n)Nnp(nR). Relevant work related to

these ideas is also found in more recent papers by Savin et al.18,26

and by Ponec, Bochicchio, and co-workers.19,27,28

III. Energy Decomposition Into Resonant Structures

Let us now further develop the concept of resonant structure
in real space by considering atomic basins. As advanced, we
will considerS) (n1, ..., nm) as a partition of theN ) n1 + ...
+ nm electrons of a molecular system that assigns a given
number of electrons (including possibly 0) to each of them
nuclei of the molecule, which are supposed to be given in a
certain canonical order 1, ...,m. As before, the basin of nucleus
i will be Ωi. There areNS ) (N + m - 1)!/(N!(m - 1)!) of
these structures, a combinatorial number equal to 3 in H2, that
rises to 66 in H2O or 286 in NH3, and climbs to 76 223 753 060
in benzene. To construct such an object, we just need a
theoretically sound partition of the physical space into atomic
regions, which is standardly provided by the QTAM.3 It is clear
that

so we may considerp(S) as an invariant definition of the weight
of a given resonant structure, a figure that may be obtained from
the wavefunction of a system, or a model of it. No assumptions
or prescriptions coming from the particular origin of the
wavefunctions are needed. Moreover, chemical intuition assures
us that only a relatively small number of structures will
significantly contribute to molecular properties. For instance,
we may easily anticipate that the weights associated to structures
containing all the 42 electrons of C6H6 condensed on one of
the H atoms will be negligible.

Since the total molecular energy is determined under the usual
Coulomb Hamiltonian by the first (diagonal and non-diagonal)
and second order (diagonal) density matrices, all its expectation
values may be obtained in terms of the (transition) CGDMs.
Let us then decompose the expectation value of the electronic
molecular Hamiltonian,Hel ) H1 + H2 whereH1 ) ∑i

Nhi, and
H2 ) ∑i>j

N rij
-1, into coarse-grained components. There aremN

terms in the above sum, which may be grouped into classes
corresponding to each of theNS resonant structures. Each
structureS ) (n1, n2, . . . , nm) is represented bynS ) N!/(n1!,
n2!. . .nm!) terms obtained from the several ways in which the
set of N electrons may be distributed inS. This factor is a
consequence of electron indistinguishability, and∑{S}nS ) NS.
As Hel is symmetric with respect to electron permutations, each
of these terms is equal, and a structure is characterized by a
particular contribution to the expectation value, orenergy
contribution of the structure, Eel ) ∑{S} 〈Hel〉S.

Let us consider one representantRSof the structureS, namely,
any of thenS terms described above. A simple choice is that
given by the natural ordering, in which electrons 1 ton1 are
within basinΩ1, electronsn1 + 1 to n1 + n2 within basinΩ2,
and so on. Then,〈Hel〉S ) nS〈Hel〉RS, and it is sufficient to
compute the expectation value of each of the structures’
representants to reconstruct the energy. Using eqs 2 and 8, the

monoelectronic component of〈Hel〉RS turns out to be a sum of
N terms

whereΠij exchanges electronsi andj together with their basins
andWi is the basin of electroni according to the above natural
order. Since, in general, theith basin containsni electrons, the
above sum is composed ofm groups with{ni}i)1,m identical
terms. Using our CGDMs

whereCi is the condensation associated toSwhen a free electron
lies in basinΩi. Thus the monoelectronic component due to
structureS is a sum of atomic contributions, as it is for the
complete system. Notice that whenΩi changes in the above
sum, the condensationC, and therefore the indistinguishability
factors I of eq 1, change even if the structureS remains the
same.

As h is a sum of kinetic and potential terms,h ) t + V, where
V is usually due exclusively to electron-nucleus termsV ) -
∑i

mZi/ri, each atomic contribution to the electron-nucleus
potential will be the sum of intra- and internuclear attractions,
just as in the usual QTAM or IQA energetic partitions.22

Separating these terms, we get

where Ti(S) and Ven
ij (S) are the contributions to the kinetic

energy of atomi and to the attraction between the electrons in
atom i and the nucleus of atomj coming from structureS,
respectively.

It is very important to notice that the Hermitian character of
the kinetic energy operator in subsystems is only guaranteed
when the boundary of the domain is a zero-flux surface for
the gradient field that corresponds to the density upon whicht
acts. This condition defines the QTAM basins, which are
obtained from the total electron densityF, but does not
necessarily apply to each of the structure densities,F(rΩi|S). This
means that each of theTi(S) kinetic energies are not well-
defined, and that one will obtain slightly different expectation
values by using differentt forms, likek ) (-p2/2m)∇2 or g )
(p2/4m)∇‚∇′.

The above reasonings may be extended straightforwardly to
theH2 energetic component. Using now the two-basin second-
order CGDMs,〈H2〉S becomes

with Cii, Cij the condensations coming fromS on freeing two
electrons in basinΩi, or in basinsΩi, Ωj, respectively. This is
a straightforward decomposition of the contribution of structure
S to the total interelectron repulsion into intra- and interbasin
terms. Joining terms we get

∑
{S}

p(S) ≡ ∑
{S}

p(n1, ...,nm) ) 1 (7)

〈H1〉RS
) ∑

i)1

N

Π1i ∫W1
dl h1FN(1, 2, ...,N; 1′, 2, ...,N) (9)

〈H1〉S ) ∑
i)1

m ∫Ωi
dr h F(r; r′Ωi)[Ci] (10)

〈H1〉S ) ∑
i)1

m

Ti(S) + ∑
i,j)1

m

V en
ij (S) (11)

〈H2〉S ) ∑
i

m ∫Ωi
dr1∫Ωi

dr2 r12
-1F2(r1

Ωi, r2
Ωj)[Cii] +

2∑
i>j

m ∫Ωi
dr1∫Ωj

dr2 r12
-1F2(r1

Ωi, r2
Ωj)[Cij] (12)
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where we have defined the atomic self-energy contribution,
and the electronic part of the interatomic potential. The
definitions of Vee

ii and Vee
ij are obtained by directly comparing

eqs 10, 12, and 13. Had we used the conditional densities of eq
5 instead of joint probability densities, we would have obtained
the electronic energy of the structure. That is, its contribution
to the energy, were the probability ofSbe equal to one. Let us
denote these normalized quantities with a tilde. For instance,
T̃i(S) ) Ti(S)/p(S), wherep(S) is the structure’s probability of
eq 7. We may further define the total normalized interbasin
interaction potential of a structure by adding the corresponding
nuclear repulsion term,Ṽint

ij (S) ) Ṽint,el
ij (S) + 1/Rij, and use it to

construct the total normalized energy of the structure, such that
the molecular total energy is a weighted sum of the normalized
energies of the structures

IV. Example. The H2 Molecule

Let us apply the above proposed decomposition to the two-
electron ground state dihydrogen molecule. We will examine
both Hartree-Fock (HF) and correlated models to pinpoint the
statistical signatures of electron correlation. Here, symmetry
determines the QTAM basins of both atoms,A andB, which
are equivalent and whose separatrix is the plane orthogonal to
the H-H axis that intersects the axis at its midpoint. All
calculations have been performed with our PROMOLDEN code,
which will be soon generalized in order to cope with resonant
structures in multielectron systems.

As commented in the last section, H2 has three possible
resonant structures. If we choose the nuclei in theA, B order,
these areS1 ) (1, 1), S2 ) (2, 0), S3 ) (0, 2), which clearly
correspond to the covalent and the two ionic standard Lewis
forms. Symmetry imposes thatS2 ≡ S3, and all energetic
magnitudes of both structures will be identical. We have selected
three representative internuclear distances,RAB ) 1.4, 4.0, and
6.0 bohr to evaluate the evolution of magnitudes from the
molecular to the isolated atoms limit. Since our purposes are
illustrative, a simple 6-311G(p) basis set has been chosen except
when explicitly stated. We will first comment on the total energy
decomposition provided by IQA and then we will present the
energy partition at the structure level.

A. IQA Partition and General Comments. Table 1 gathers
the most important energetic magnitudes for the global IQA
partition, both at the HF and complete active space (CAS)[2,2]
levels. Just bearing in mind the idea of resonance in real space
helps rationalize many interesting facts partially put forward in
ref 22. If we start examining monocentric contributions, for
instance, we immediately see that, despite considerable redis-
tributions in each quantity with respect to the infinite distance
limit, the self-energy of the hydrogen atom is very close to
-0.5 Eh at the CAS level. The difference between the atomic
self-energy in a molecule and a reference (usually in vacuo)

is known as deformation energy,Edef
A ) Eself

A - Eself
A,0, and it is a

basic tenet of the IQA approach that deformation energies are
small magnitudes in the absence of large charge transfers. In
IQA, binding results from a competition between (usually)
repulsive deformations and overall attractive interactions. As
we can see, it turns out necessary forEdef to be small that a
non-negligibleVee

AA value be present. This is electron repulsion
within one basin, that in H2 has to be associated to the ionic
structures, since in the covalent one there is one electron in
each basin.Vee

AA is then exclusively due to structureS2, and the
origin of the failure of the HF model at large distances is made
evident.p(2, 0) is fixed at 1/4 in the HF solution (see below),
and there is a 25% probability of finding theS2 or S3 structures
at any distance that introduces a severeVee

AA penalty. Even the
simplest CAS[2,2] solution allowsp(2, 0) to vanish as theRAB

distance increases, so the covalent structure is the correct infinite
limit with Vee

AA ) 0.
A similar analysis may be done for the interaction energetic

components. One of the most interesting terms isVee
AB, which

may only result this time from the covalent structureS1. This
number tends correctly to its Coulombic contribution (which
in the infinite distance limit is 1/RAB) in the correlated
description, but erroneously goes to 1/(2RAB) in the HF model.
Again, a look at the constantp(1, 1) ) 1/2 value clarifies this
issue. A significant fact deserves due consideration. It regards
the role of the quantum-mechanicalVxc

AB term at large dis-
tances. As we see, it tends to be indistinguishable from the total
interaction energy,Vint

AB, in the CAS description. This only
means that all other classical interaction terms,Ven

AB ) Ven
BA,

Vnn
AB, andVC

AB cancel among them, leaving non-classical behav-
ior as the only source of cohesion at large distance.22

Let us proceed with the statistical features of the electron
distribution in relation with our present motives. H2 has no pure,
equal-spin Fermi correlation, so at the HF level, i.e., without
taking into account Coulomb correlation, all Fermi effects are
due to improper electron counting, or self-interaction. From the
statistical point of view, the two electrons are independent
objects in HF H2, this behavior not being affected by internuclear
distance. At the density matrix level,F2(r1, r2) ) F(r1)F′(r2)/2,

〈Hel〉S ) ∑
i

m

{Ti(S) + Vee
ii (S) + Ven

ii (S)} + ∑
i>j

m

{Vee
ij (S) +

Ven
ij (S) + Ven

ji (S)} ) ∑
i

m

Eself
i (S) + ∑

i>j

m

Vint,el
ij (S) (13)

Ẽ(S) ) ∑
i

m

Ẽself
i (S) + ∑

i>j

m

Ṽ int
ij (S)

E ) ∑
{S}

p(S)Ẽ(S) (15)

TABLE 1: Some Global IQA Magnitudes for 6-311G(p) H2
at the HF (First Three Columns) and CAS[2,2] (Last Three
Columns) Levelsa

HF CAS

RAB 1.4 4.0 6.0 1.4 4.0 6.0

TA 0.5611 0.3307 0.3386 0.5808 0.4689 0.4972
Ven

AA -1.2161 -0.8572 -0.8344 -1.2282 -0.9837 -0.9980
Vee

AA 0.1957 0.1348 0.1281 0.1629 0.0232 0.0021
VC

AA 0.3913 0.2696 0.2562 0.3996 0.3095 0.3121
Vxc

AA -0.1957 -0.1348 -0.1281 -0.2367 -0.2863 -0.3100
VX

AA -0.1957 -0.1348 -0.1281 -0.1989 -0.1518 -0.1554
Eself

A -0.4582 -0.3917 -0.3677 -0.4845 -0.4916 -0.4986

Ven
AB -0.5981 -0.2529 -0.1696 -0.5980 -0.2487 -0.1664

Vee
AB 0.2861 0.1231 0.0833 0.2997 0.2179 0.1632

VC
AB 0.5723 0.2462 0.1665 0.5244 0.2476 0.1662

Vxc
AB -0.2862 -0.1231 -0.0833 -0.2247 -0.0298 -0.0030

VX
AB -0.2862 -0.1231 -0.0833 -0.2526 -0.0371 -0.0024

Vint
AB -0.1958 -0.1327 -0.0893 -0.1820 -0.0296 -0.0030

p(1,1) 0.5000 0.5000 0.5000 0.5832 0.9027 0.9877
p(2,0) 0.2500 0.2500 0.2500 0.2084 0.0487 0.0062

a All magnitudes have been defined in the text for a given structure,
exceptVC, Vxc, andVX, which are the Coulomb, exchange-correlation,
and pure exchange components of the interelectron repulsion, respec-
tively. All data are in a.u.
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whereF′ ) (N - 1)F/N ) F/2 is the electron-number corrected
density that integrates toN - 1, not toN. Given that both atomic
basins are equivalent, the statistical independence of electrons
must lead to a binomial distribution. This is characterized by
the probability that a given basin be occupied by one of the
independent electrons,p ) 1/2, sop(1, 1)) 0.5, andp(2, 0))
p(0, 2) ) 0.25, as numerically found. The average basin
population is〈NA〉 ) 0 × p(0, 2) + 1 × p(1, 1) + 2 × p(2, 0)
) 1.

It is illuminating to examine the self-interaction problem
from the point of view provided by considering resonant
structures. In the standard textbook interpretation of the HF
scheme, the problem is solved, as explained above, by properly
counting electrons, so the (N - 1)/N ) 1/2 factor introduced
by the inclusion of the Fock-Dirac exchange transforms the
incorrect Coulombic repulsions into the correct ones. Such a
view may be recovered from Table 1, andVxc ) VX (for no
correlation exists in HF) turns out to be minus halfVC. This
stands both for the intra- and the interbasin contributions. If
we think in terms of structures,Vee

AA is only due toS2, soF2(r1
A,

r2
A|S2) determines it (eq 12), and we can ask ourselves about

the CoulombicṼC
AA(S2) term that we may define withF1(rA|S2),

a density which integrates to 2 electrons. The answer will have
to be corrected again for the proper number of electrons, so the
monocentric self-interaction is as real a phenomenon as it may
be.

The situation is very different asVee
AB is regarded. Now only

S1 contributes, andF1(rA|S1) as well asF1(rB|S1) integrate to
one electron in their respective basins. No self-interaction
appears from computing repulsions with those densities, which
refer to different electrons. Before analyzing the contributions
of each structure in depth, we may confidently suppose that
bothF1(rB|S1) and itsA counterpart will not depart in an essential
way from the totalF. Vee

AB may then be seen as the repulsion
between two non-self-interacting atomic densities that has to
be weighted withp(1, 1), the probability that each electron
occupies a different basin. Table 1 shows thatVC

ABp(1, 1) is an
excellent approximation toVee

AB. In this image, the Fock-Dirac
exchange does not correct for the spurious self-interaction but
for the existence of resonant structures in which different number
of non-self-interacting electrons are located in each atomic basin.
For each structure, electrons in different basins will now repel
in a basically Coulombic manner, since correlations extinguish
rapidly with distance in normal situations. We should then
expect important correlation correctionswithin basins but rather
uncorrelated descriptions among basins. We may then say that
interbasin exchange energies,VX

AB, are in fact resonance ener-
gies.

B. Decomposition at the Structure Level.Having only three
different resonant structures and two electrons, CGDMs, CG-
PDs, and coarse-grained energetic magnitudes may be easily
obtained in H2. Let us callC1, C2, andC3 the condensations
leading toS1, S2, and S3, respectively, upon considering free
electrons. All CGPDs can be constructed from the data found
in Table 1, andp(0A) ) p(0B) ) p(2A) ) p(2B) ) p(2, 0)) p(0,
2), andp(1A) ) p(1B) ) p(1,1). Similarly, we may use our
previous formulas to derive different densities. Only one two-
electron CGDM exists

since no condensed electrons remain. It can be condensed into
the one-electron CGDMs

and their symmetry equivalent ones when the free electron is
in B andS2 transforms intoS3.

This set of densities are immediately recovered from the HF
model of H2, as F2(1,2) ) F(1)F(2)/4 has separate electron
coordinates. With this,F(rA)[C1] ) F(rA)[C2] ) F(r)/2, and the
electron density within basinA, for instance, is partitioned
equally into theS1 andS2 structures at any internuclear distance.
Moreover,p(S1) ) 0.5, as well asp(S2) ) 0.25, are fixed weights
that allow us to writeF(rA|S1) ) F(r) andF(rA|S2) ) 2F(r), which
clearly shows that there are 1 and 2 electrons within basinA in
the covalent and ionic structures, respectively. Notice that some
structure specific CGDMs vanish. For instance,F2(r1

A, r2
B)[C2]

does not exist.
The energetic decomposition of the molecular energy into

structure components at the HF level is therefore already
contained in Table 1, so we will only comment briefly on it.
For instance,TA ) T̃A(S1) ) T̃A(S2)/2, andVen

AA ) Ṽen
AA(S1) )

Ṽen
AA(S2)/2. As a true independent electron model, the normal-

ized kinetic energy or electron-nuclear attraction of theS2

structure is just twice that of a single electron. AlsoVee
AA )

Ṽee
AA(S2)/4, and adding the intra-basin components we may get

the normalized atomic self-energies for each structure. AtRAB

) 0.7 bohr,Ẽself
A is thus-0.6550 and-0.5272 a.u. for theS1

andS2 structures, respectively, andEself
A ) p(S1) × Ẽself

A (S1) +
p(S2) × Ẽself

A (S2), as previously proven. It is interesting to
notice that the intrabasin Coulombic contributionṼC

AA(S2) ) 2
Ṽee

AA(S2), so S2 behaves like an atomic HF scheme within the
molecule, and we still need a self-interaction correction coming
from intra-basin exchange contributions. On the contrary,
ṼC

AB(S1) ) Ṽee
AB(S1), and the absence of self-interaction present

in S1, together with the statistical independence of both electrons,
lead to a purely Coulombic interaction. Given the particularly
simple structure of the conditional densities in the HF scheme,
the atomic basins ofF are also basins ofF(rA|S1) andF(rA|S2),
so there are no problems with the hermitian character oft within
this approximation.

At the correlated level, the simplicity is lost. This, together
with the ordinary second-order densityF2 are all we need to
construct the CGDMs. Figure 1 displays a number of features
of these densities atRAB ) 4.0 bohr in a full configuration inter-
action (FCI) calculation. First, it is interesting to notice that the
probability density of finding an electron as it moves around the
molecule with the other electron located within basinB, is a
continuous function, equal toF(r)[C1] in A and toF(r)[C3] in
B. At this elongated internuclear distance, characterized by a low
p(S3), F(r)[C3] is much smaller thanF(r)[C1], but the small peak
in B grows when decreasingRAB, at a similar pace as the weight
of the ionic structures. Second, the total molecular densityF,
depicted only in basinA, is clearly dominated by theS1 structure.
Nevertheless, the traditional density increase in the bonding
region, one of the alleged signatures of covalent interactions,
is clearly due to the contribution of the ionic structures. Actually,
to the possibility that two electrons be located in that bonding
region, which in our basin separation corresponds toS2 andS3.
A similar analysis using other space partitionings, i.e., that
provided by the ELF, would assign this density increase to the
electrons in the bonding valence basin.

The lower part of Figure 1 is particularly insightful. Here
we plot the conditional (normalized) densities associated toS1

F2(r1, r2) ) Ψ*(1, 2)Ψ(1, 2) (16)

F(r1
A)[C1] ) 2∫B

dr2 Ψ*(1, 2)Ψ(1, 2)

F(r1
A)[C2] ) 2∫A

dr2 Ψ*(1, 2)Ψ(1, 2) (17)
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andS2 within basinA. It is clear that the two electrons inS2 are
very asymmetrically distributed with respect to the nucleus,
much more likely to be found in the bonding region than in the
rear nuclear part. As possibly expected, theS1 density is almost
indistinguishable from that of a free H atom, but interestingly
enough,F(r|S2) is very close to the density of a hydride anion
near the nucleus. In the outer regions of this hydride ionic state,
charge is pumped from the rear to the bonding region. It is
tempting to rationalize this asymmetry in terms of the polariza-
tion induced by the nakedB proton. In fact, very simple attempts
to simulate this polarization by means of a point charge electric
field lead to a considerable enlargement of the region in which
the S2 density resembles the polarized hydride. We should take
into account, however, that H- is a weakly bound system very
difficult to simulate properly in a destabilizing positive field.
For the time being, we simply state thatF(r|S2) has clear features
that may be associated with a heavily polarized hydride. All of
these considerations stand true in a wide range of internuclear
distances, though the distortions/polarizations increase with
decreasingRAB.

Table 2 contains the energy decomposition into resonant
structures obtained from the CAS[2,2]//6-311G(p) calculations.
Since in H2 intrabasin electron repulsions come fromS2, and
inter-basin ones fromS1, the Vee terms are those of Table 1,
though now their interpretation is different. For instance,
Vee

AA(S2) is equal toVee
AA in Table 1, though now it is the whole

electron repulsion coming from structureS2.

The hermiticity problem of the kinetic energy operator
manifests clearly in the correlated case, though the differences
between theg andk descriptions are not large. If we compare
the balance of theS1 andS2 components ofKA andGA at RAB

) 1.4 a.u. with those coming from the HF model, it turns out
that theGA data are clearly closer to the half and half HF
partition than those ofKA. We will then useG, as is usually
done when managing similar situations.

The evolution of the energetic components inS1 andS2 with
increasing distance is interesting. AtRAB ) 1.4 a.u, the covalent
structure accounts for 64% the total molecular energy, though
p(S1) ) 0.5832. This clearly means thatẼ(S1) < Ẽ(S2). In fact,
both energies are-1.2599 and-0.9952Eh, respectively. These
covalent and ionic energies are in reasonable agreement with
those found from other methods. AsRAB increases, the energetic
contribution of the covalent structure becomes dominant. It must
be taken into proper account, however, that the energetic
decomposition proposed here does not come from a state
superposition of variational structures, like in the usual Heitler-
London description in which structures are mixed at the state
(wavefunction) level. If done so, no structure may have a lower
energy than the molecular ground state, and the minimal energy
of the latter is interpreted in terms of resonance between the
states of each given structure. Our proposal comes from an a
posteriori analysis of a system’s state vector and is compatible
with a statistical mixture of different electron arrangements in
real space. No variational restriction about each structure’s
energy applies here.

The normalized atomic self-energies,Ẽself
A provide ener-

getic counterparts to the atomic densities depicted in the inset
of Figure 1. AtRAB ) 1.4 bohr, these are easily computed as
-0.6532 and-0.4957Eh for the S1 andS2 structures, respec-
tively. The covalent H atom is almost 100 kcal/mol more stable
than the free H atom, and this stability is due to an increase in
kinetic energy more than compensated by the large electron-
nucleus attraction, which indicates thatF(r|S1) is noticeably more
compact than the free H density. The ionic H- energy is higher
than the free H limit but lies 18 kcal/mol below the HF//6-
311G description of the hydride. Its energetic balance is,
however, very different from that of a free H-, with K̃A(S2) )
1.1161Eh as compared with a HF//6-311G kinetic energy of
0.5741 a.u. These data are consistent with a very compressed
H- moiety at RAB distances near H2 equillibrium. Similar
analyses may be done at the other internuclear distances. At
RAB ) 6.0 bohr, Ẽself

A (S1) ) -0.4966, which is the free H
energy limit within 1 kcal/mol. Notice that all normalized

Figure 1. One electron densities along the internuclear axis for the
covalent and ionic structures in H2, as obtained from a full configuration
interaction FCI//VTZ(d, f,2p) calculation atRAB ) 4.0 bohr. Nucleus
A is located atr ) -2.0 bohr and nucleusB at r ) 2.0 bohr. In the top
figure, we plotF(r)[C1] (full line) and the complete molecular density
F with dotted line within theA (left) basin. OnlyF(r)[C3] (long-dashed
line) is shown in theB (right) basin. The dotted vertical line separates
the A and B basins. In the bottom figure we present the conditional
probabilities ofS1 (full line) andS2 (dashed line) within basinA. They
integrate to one and two electrons, respectively. We have also
superimposed the total densities of the free H atom (short-dashed line)
and the H- anion (dotted line). All data in atomic units.

TABLE 2: CAS[2,2]//6-311G(p) Energetic Decomposition at
the Structure Levela

S1 S2

RAB 1.4 4.0 6.0 1.4 4.0 6.0

GA 0.3483 0.4369 0.4922 0.2326 0.0320 0.0051
KA 0.3889 0.4528 0.4958 0.1919 0.0161 0.0014
Ven

AA -0.7293 -0.9096 -0.9897 -0.4988 -0.0741 -0.0083
Vee

AA 0.1629 0.0232 0.0021

Vee
AB 0.2997 0.2179 0.1632

Ven
AB -0.3443 -0.2215 -0.1639 -0.2532 -0.0272 -0.0026

Eself
A -0.3810 -0.4727 -0.4975 -0.1033 -0.0189 -0.0011

E -0.7348 -0.9448 -0.9950 -0.2074 -0.0339 -0.0027

a Magnitudes and internuclear distances correspond to those in Table
1, but we have included both theg andk forms of the kinetic energy
operators. Here the first three columns correspond to theS1 structure
and the last three to theS2 one. BothE and Eself

A are obtained with
g-based kinetic energy values. All data are in a.u.
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magnitudes forS2 near the dissociation limit suffer from a heavy
loss of precision, so they should be taken with care.

It is interesting to compare energetic data across Table 1 and
Table 2. We can see, for instance, how theVee

AB(S1) andVen
AB(S1)

values are much more similar than the global numbers found
in Table 1. This is a sign of both the compactness of the
F(r|S1) density and the interference created in the electron-
nucleus attraction by the ionic structures. Many other facts are
easily rationalized by adopting a more or less classical image
of the resonant structures. In this regard, theVen

AB(S2) value is
not very far from the classical value computed for a HF H-

anion and a test proton separated by the internuclear distance,
which is 0.2977, 0.0245, and 0.0021Eh at RAB ) 1.4, 4.0, and
6.0 bohr, respectively, the difference decreasing on increasing
RAB.

It is slightly surprising that a simple CAS[2,2] description,
which does include static but a vanishing amount of dynamic
correlation, gives rise to a considerable difference betweenVee

AA

andVC
AA/2, 23 kcal/mol atRAB ) 1.4 bohr, as calculated from

Table 1. However, if we compute the Coulombic contribution
of S2, VC

AA(S2), we obtain 0.3288Eh, which decreases the
difference with respect toVee

AA to a value smaller than 1 kcal/
mol, sinceVee

AA ) Vee
AA(S2). The CAS[2,2] S2model is therefore

quasi-HF, with almost independent electrons. A similar 1 kcal/
mol difference is obtained betweenVee

AB(S1) andVC
AB(S1). From

the two electron statistical point of view, the CAS[2,2]S1-
structure thus corresponds to a very correlated electronic motion,
for if one electron is in basinA, the other is in basinB. However,
this correlation is actually very simple, for it corresponds to
two sets of quasi-independent one-electron cages. The inability
of the HF model to account for these two different kinds of
statistical independece is the source of its failure upon dissocia-
tion conditions.

Finally, we should notice that a big part of the nonclassical
energetic contributions contained in totalVee

AA and Vee
AB terms

acquire a new meaning when decomposed at the resonant
structure level. As our H2 example has shown us, very small
VX

AB and Vcorr
AB values in each of the relevant structures of a

given molecule may conspire, after averaging, to provide much
larger total apparent exchange or correlation energies. Further
work will prove the generality of these ideas.

V. Conclusions

The purpose of this paper has been twofold. On the one hand,
we have shown how exhaustive partitions of the physical space
may be used to obtain a whole hierarchy of coarse-grained
density matrices and probability distributions from a general
molecular wavefunction. These objects serve multiple purposes,
and may be used, for instance, to construct the electron density
in a given region, when we know that exactlyn electrons lie
within another region of space.

On the other hand, when the partition of space is into atomic
regions, as in the quantum theory of atoms in molecules,3 each
possible distribution of electrons into atoms may be associated
to a given resonant structure, in the sense of Pauling. We have
shown that, in these conditions, the total molecular energy may
be written as a weighted sum of structure energies, the weights
being the probabilities with which each structure enters the total
wavefunction.

We have used the H2 molecule as a model to present some
actual numerical data under the umbrella of the interacting

quantum atoms approach.2,20 The decomposition of the energy
into the covalent and ionic structures sheds light on the self-
interaction problem of interelectron repulsions, and the interbasin
electron-electron potential energy, which is exclusively due
to the covalent structure, has been shown to be free of self-
interaction. Many energetic magnitudes in IQA acquire a new
sense when examined at the structure level. Some of them turn
out to behave more classically when separated into structures,
and their complexity at the global level turns out to be the result
of mixing quantities with different origins and trends.

We think that this work is a first step toward a general theory
of resonance in real space, that may become a bridge between
modern valence bond theory and the topological frameworks
of the chemical bond. We are currently working to generalize
our computer codes to multielectron cases so that more chemical
examples may be dealt with.
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