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A general hierarchy of the coarsedrained electron probability distributions induced by exhaustive partitions

of the physical space is presented. It is argued that when the space is partitioned into atomic regions the
consideration of these distributions may provide a first step toward an orbital invariant treatment of resonant
structures. We also show that, in this case, the total molecular energy and its components may be partitioned
into structure contributions, providing a fruitful extension of the recently developed interacting quantum atoms
approach . Chem. Theory Compu005 1, 1096). The above ideas are explored in the hydrogen molecule,
where a complete statistical and energetic decomposition into covalent and ionic terms is presented.

I. Introduction so, we will identify each possible partition of tiéelectrons
of the molecule into then nuclei as a resonant structure. This
does not cover all of the resonance definitions proposed over
the years, but we may consider the analogy as a good starting
point. Second, we will show how to decompose the molecular
energy into resonant contributions, a procedure not exempt from
A central tenet of many of these techniques is the existence & certain degree of arbitrariness. Our work is reminiscent of
the theory of loges proposed long ago by Dau§eY’ In fact,

of regions in space that are to be identified with chemically there are recent relevant developments along similar lines, as
meaningful concepts, i.e., atoms, bonds, cores, lone pairs, etc, P 9 ’

o e g . we will briefly comment on below819
In many of these descriptions, this is done by exhaustively The rest of the paper is organized as follows. In section I
partitioning the 3D space into appropriately defined domains. we define the coalrjselzJ rainedgdistributions and .several ma n|
In others, these regions, usually atoms, are allowed to penetrat 9 g

each other, and each point in space is shared by many of thgudes that are used throughout the paper. Section Il deals with

elements according to well-defined rules (see ref 2, for instan(:e,the resonant structure energetic decomposition, and section IV

for a discussion of some particular implementations of exhaus- applies a!l of the former'|deas tq the §|mples;§ iolecule,
tive and fuzzy prescriptions). commenting upon the fruitful relationship between the present

. ! . results and those of the interacting quantum atoms (IQA)
Fuzzy atomic decompositions are not completely compatible approach to the chemical bond. The latter is a recently proposed
with a pure real space viewpoint. Using only spatial require- P ) Y prop

ments, once the position of a given electron is determined the energy decomposition scheme completely compatible with the

Lo e .~ QTAM.20-22 We will end with some conclusions.
indistinguishability principle should prevent us from recovering
its original affiliation and assign it to atom A or atom B with
given probabilities. To avoid these kinds of problems, electrons
should be associated to spatial regions using geometrical criteria, Any exhaustive partitiof® of the 3D space may be envisaged
leading to exhaustive partitions of the physical space. as a coarsegrained mapping of the sete R® onto the set of
These are usually obtained from the topologies induced by mutually exclusive basins of the partitié® such that : r —
the gradient fields of appropriate scalar fields. Two well i, r € Qi. All points belonging to a given basin are then
developed examples of nonfuzzy decompositions are based orreplaced by the basin itself. This coarsgaining may be
the attraction basins of (i) the charge dengityan approach  translated, either partially or totally, to tié—electron density
which becomes the quantum theory of atoms in molecules matrix (DM), or probability densityn(1, ...,N) = W* (1, ...,
(QTAM), extensively developed by Bader and co-worleasd N)¥(1, ..., N), to define coarsegrained density matrices
(i) the electron localization function (ELF) of Becke and (CGDMs). To that end, it is convenient to introdu€ (or
Edgecomb& which has been thoroughly studied in the past simply 7) as the complement of th&; (or simply i) basin.
decade by Savifr,1° Silvi,11"13 and others? Coarse-graining the electrons of the system in real space is
The aim of this paper is twofold. First we will show how to  then equivalent to averaging the positions of some (partial
define coarse grained probability distributions from exhaustive condensation) or all (total condensation) of the electrons over
topological partitions oR® in molecules. We think that they  a set of basins of the 3D partition. Total condensation provides
provide a first step in the investigation of Pauling’s concept of a partition of the electron system into basins. If the latter are
resonance within an orbital invariant formalism. In order to do associated to nuclei, as done by using the QTAtke partition
of theN electrons into then nuclei of the molecule will provide
*To whom correspondence should be addressed. our real space image of a resonant structure.

Real space analyses of wavefunctions have grown over the
years into recognized alternatives to orbital theories of the
chemical bond. After all, chemistry is still being taught as
something that takes place in the physical, not the Hilbert,
space.

Il. Basic Definitions
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Let us then coarse-grain (or condense, or basin average) the
generalpn. We will consider a finite number of basins 1, m,
ordered in some prescribed canonical @y ..., Qn, such that
Qi U ...U Qn = RS The extension to an infinite number of
basins (as is the case in crystals) is done easily. Now we will
condense, ..., Cy electrons over each of the basify, ...,

Q. Notice that any of these numbers may be zero, that all of
the basins are mutually exclusive, and that the total number of
condensed electrons needs not exh&ys + ... + ¢ =.1"<

N. The remaining norricondensed = N — _{"electrons are
situated at ther;, ..., r; positions. Each of these positions
necessarily belongs to a basin (save the null measure set formed
by basin boundaries, with no consequences), and we will specify
it by a superindex when necessary, for instamge,rg, etc,
wherea needs not bé&2;, etc. The total number of electrons
within a general basino. (n®) is given by the sum of the number

of condensedd®*) and free {%) electrons in it (* = ¢* + f%). A
coarse-graining or condensatio@ is a partition of the/’= N

— i electron system into basins, determined by the vecton of
ordered integer€ = (cy, ..., Cm), With ¢; = c%. Similarly, the

oty ... iy, ..., r)[Cl = 'f.;cdrm- ..dry,

@ . iiF1. N LT HL L N) (2)
Since all subsequent definitions regarding transition DMs may
be obtained straightforwardly from the previous ideas, we will
not comment further on them.

It may be shown that the traditional total reduced DMs are
obtained by adding the above CGDMs over all possible
condensations ofi"= N — i electrons

pilry, - om) = Zpi(rl’ e
C

It is also to be noticed that any CGDM may be obtained by a
suitable combination of the set here described.

The zeroth order total DM, obtained when only one basin is
considered, and so witi = S= (N), andQ; = R®, is po()[N]
= 1, and keeps no relevant information, being a consequence
of normalization or conservation of the number of electrons.
basin adscription of the free electrons is specified Bysector, Their equivalent zeroth-order CGDMs, however, provide the
F=(f, ....fm), with f; = f%. TheS=C + F = (M, ..., Nm) coarse-grained probability distributions (CGPDs) of the set of
object, describing the total number of electrons in each basin is electrons into basins. We will ugeinstead ofpo() and will
called a (resonant) structure. In these expressigng, andn notice that condensations and structures are equivalent in this
refer toc%, 2, andn®;, respectively, and no confusion between case. Thus
canonically ordered basins, associated with subindices, and
general basins, labeled with superindices, should arise. For P(S = poO[S= C] = p(ny, -..Ny) (4)
completeness} fi = i, Yj¢ = .17 and }jn; = N. Boldface ) - o o ]
symbols will only be used when their vector realization needs 1S the probability of finding thé\ electrons Q|strlbuted agcordlng
be highlighted. to S= C. Every CGDM may be normalized according to its

Taken together, the CGDM describing the probability of such associated CGPD to construct conditional measures. For instance

p(r)IS—F]
written in parenthesis, as usual, and the condensation inside p(S
brackets. If the basin asssociated to each free position is also . . o i .
specified, we will give the structure in brackets. In this notation 'S the conditional probability of finding any electron in basin
pi(r1, ..., 7)[C] describes the probabiliy density that any set of within structureS, with anF vector which has only one element

IC] ®3)

condensed configurations will be &h order DM, and we will
use a notation in which noncondensed electron positions are

p(rilS) = (5)

i electrons be located at, ..., r;, within condensatiorC, and
pi(re, ...,r)[C], the same object with respect to struct®e C

+ F, where we should note thétis also determined by thg,

..., I) set. Care should be taken on the physical interpretation
of structure CGDMs. Each basin (e.gt) contains a fixed
integer number of electrons, condensed and not condensed. Thi
means that the apparently continuous variables., rj cannot

cross the boundaries of their associated basins and enter others.

When this happens, a change occurd-jnand thus inS, but

not in the condensatio@, and that is why CGDMs are to be
labeled withC. Other definitions of CGDMs are possible, but
as our interest in this paper is focused on resonant structures
we will stay with the above constraints.

Taking into account the indistinguishability of the full set of
electrons, we may write

oi(ry, .., 1)ICl = IfDCdrHl. Cdry (@, LN, (D)

whereDc is a domain such that electrorisi 1) to (i + c¢;) are
integrated over basif;, electronsi(+ ¢; + 1) to (| + ¢; +
Cp) over basinQ,, etc, until each of the condensed electrons
has been integrated over its associated badin.=
Nl/(itcee - -cwl) is the indistinguishability factor taking care of
all permutations among equivalent groups of electrons.
Transition DMs may also be coarsgrained in a similar
manner

different from zero (and equal to 1) for bagsinThis magnitude
integrates to* = c* + 1, the number of electrons in the basin.

It is many times relevant to consider only a subset lo&isins
(o, ...x) out of them basins in the original partition. This may
be done by considering a new partitioning composel 6f1
basins: the subset of interest plus a new basin formed by the

Tnion of the rest in the original set. For instance, indicating

explicitly the number and basin occupied by each set of electrons

(6)

with A7 =no + ... + n© < N, andA = aU ... Uk, is the
probability that exacthyn?, ..., n< electrons lie within they, ...,

k basinsk < m, respectively. It must be stressed again that the
n%, ..., n* labels do not necessarily keep the canonical order,
and should therefore not be confused with tfie used before,
that do keep that order.

Particularly interesting are the onbasin electron distribution
functions,p(n®), 0 < n* < N. These have been studied by Savin
and co-workerg®=25 who have shown with clever algebraic
rearrangements that they may be obtained easily from basin
overlap matrices in monodeterminantal cases.g(h&) values
obtained in simple molecules behave in a Gaussian manner and,
in some simple circumstances, correspond faithfully to binomial
distributions that point toward the almost independency of the
electrons under scrutiny. Once we have a full distribution
function, any basin population average may be obtained from
the p(n*) set. For instance, the average number of electrons in

p(n®, ...n) = p[n%, ...,n",(N — Uf\”)’_*]
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basina, IN[4, is INIZ = Y—snp(n%). Relevant work related to ~ monoelectronic component &g turns out to be a sum of

these ideas is also found in more recent papers by Savin®&al. N terms

and by Ponec, Bochicchio, and co-worké&tg?-28 "

1. Energy Decomposition Into Resonant Structures [, = ) Iy fwl dihpn(d, 2,...N; 1, 2, .,N) (9)
=

Let us now further develop the concept of resonant structure
in real space by considering atomic basins. As advanced, wewherell; exchanges electronsandj together with their basins
will considerS= (ny, ..., ny) as a partition of théN = ny + ... andW is the basin of electrohaccording to the above natural
+ nm electrons of a molecular system that assigns a given order. Since, in general, thith basin contains; electrons, the
number of electrons (including possibly 0) to each of the above sum is composed ai groups with{n}=1 identical
nuclei of the molecule, which are supposed to be given in a terms. Using our CGDMs
certain canonical order 1, .m. As before, the basin of nucleus
i will be Q;. There areNs = (N + m — 1)//(N!/(m — 1)!) of m
these structures, a combinatorial number equal to 3irtiat ML= Z S, drhp(r; rr[C] (10)
rises to 66 in HO or 286 in NH, and climbs to 76 223 753 060 1= '
in benzene. To construct such an object, we just need a ) . )
theoretically sound partition of the physical space into atomic WhereCiis the condensation associatesiohen a free electron
regions, which is standardly provided by the QTAM.is clear ~ l1€S in basin€;. Thus the monoelectronic component due to
that structureS is a sum of atomic contributions, as it is for the
complete system. Notice that whé&& changes in the above
_ _ sum, the condensatidd, and therefore the indistinguishability
%p(S} = %p(nl, o) =1 @) factors| of eq 1, change even if the structuBeremains the
same.

so we may considax9 as an invariant definition of the weight ~ ASNIS ﬁ‘ S(L;m of kilrlet?c ellnd poTentiaI terrlr’n;,z t+o, WEere

of a given resonant structure, a figure that may be obtained from ¥ r'ns usually due exclusively _to e_ectrermuc eus termsg = —

the wavefunction of a system, or a model of it. No assumptions 2i Z/fi, €ach atomic contribution to the electronucleus

or prescriptions coming from the particular origin of the potential will be the sum of intra- and internuclear attractions,
wavefunctions are needed. Moreover, chemical intuition assuregUst as in the usual QTAM or IQA energetic partitiofis.
us that only a relatively small number of structures will Separating these terms, we get
significantly contribute to molecular properties. For instance, m m
we may easily anticipate that the weights associated to structures _ i i
containing all the 42 electrons ofs8s condensed on one of a0 ;T@ + .Zve"@ 11
the H atoms will be negligible.

Since the tot_al m_olecular energy is determined un_der the Usualwhere‘r‘(S) and Vgn(S) are the contributions to the kinetic
Coulomb Hamiltonian by the first (diagonal and retfiagonal) — gnergy of atom and to the attraction between the electrons in
and second order (dlggongl) density matrices, aI'I its expectation 51om’i and the nucleus of atory coming from structures,
values may be obtained in terms of the (transition) CGDMs.

] © respectively.
Let us then decompose the expectation value of the electronic ¢ js very important to notice that the Hermitian character of

- _ Y > Vel : .
molecular HamiltonianHe = Hy + Hz whereH; = 57hi, and e kinetic energy operator in subsystems is only guaranteed

i)=1

Ho = 3}!;r; %, into coarse-grained components. There arn¥ when the boundary of the domain is a zeftux surface for
; the gradient field that corresponds to the density upon which
By = Z /d1‘--/ AN acts. This condition defines the QTAM basins, which are
) & @ obtained from the total electron densipy, but does not
bk =1 necessarily apply to each of the structure densitig&|S). This
N means that each of th&(S) kinetic energies are not well
U*(1,...,N)Hy¥(1,...,N). (8) defined, and that one will obtain slightly different expectation

values by using differerttforms, likek = (—h%2m)V? or g =

terms in the above sum, which may be grouped into classes(fi?4m)V-V'.
corresponding to each of thhs resonant structures. Each The above reasonings may be extended straightforwardly to
structureS= (ny, Ny, . . . , Ny) is represented bys = NI/(ny!, theH; energetic component. Using now the twloasin second-
nyl. . .nyl) terms obtained from the several ways in which the order CGDMs,[H,[4 becomes
set of N electrons may be distributed i This factor is a -
consequence of electron indistinguishability, ns= Ns _ )
As He is symmetric with respect to electron peﬁ%taﬁons, each (H,ld = Z fgidrlfgi dr, ropo(ts ™, 1,2)[C +
of these terms is equal, and a structure is characterized by a '
particular contribution to the expectation value, emergy m
contribution of the structureEe = g MHelld -1 Qe

Let us consider one represent&@tifsihe structures, namely, 2; f Qidrlf & 0raFizpA(f ™ T2 )[C”] (12)
any of thens terms described above. A simple choice is that
given by the natural ordering, in which electrons 1ntoare with Cj, C;j the condensations coming fro8ion freeing two
within basinQ;, electronan; + 1 to n; + np within basin,, electrons in basiif2;, or in basins?;, Q;, respectively. This is
and so on. Then[Held = ndHelg, and it is sufficient to a straightforward decomposition of the contribution of structure
compute the expectation value of each of the structures’ Sto the total interelectron repulsion into intraand interbasin
representants to reconstruct the energy. Using egs 2 and 8, théerms. Joining terms we get
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TABLE 1: Some Global IQA Magnitudes for 6-311G(p) H.

M= Zm{T‘(S + V';e(s) + V';n(s)} + i{v‘ée(s) + %totlnfnﬁslz) E:ei\r/sé;hree Columns) and CAS[2,2] (Last Three

1=>]

) , m mo HF CAS
Ve + Ve O} = D B + ) VineS (13) Re 14 40 6.0 14 4.0 6.0
' o 0 05611 0.3307 03386 05808 04689 0.4972

A — — — — — —
where we have defined the atomic sednergy contribution, vag (1)52192% 0681537428 Ogi‘gl 1%2?6229 0'93?)72320'9%88021

:no_l _the elect_rionlc p?rt of the_ mterator_nlc potential. _The eég 03913 0.2696 02562 03996 03095 0.3121
efinitions of Vg, and Vi, are obtained by directly comparing 'S 1957 —0.1348 —0.1281 —0.2367 —0.2863 —0.3100
egs 10, 12, and 13. Had we used the conditional densities of eq,Ax  _4 1957 —0.1348 —0.1281 —0.1989 —0.1518 —0.1554
5 instead of joint probability densities, we would have obtained E')é —0.4582 —0.3917 —0.3677 —0.4845 —0.4916 —0.4986
the electronic energy of the structure. That is, its contribution "
to the energy, were the probability e equal to one. Let us Vgrz —0.5981 —0.2529 —0.1696 —0.5980 —0.2487 —0.1664
denote these normalized quantities with a tilde. For instance, Vvi% 0.2861 01231 0.0833 02997 02179 01632
T(S = T(9/p(S), wherep(S) is the structure’s probability of VEB _8'2223 _00'12243612_0%;225_0 2.25427410 0%53750 ogét%z
eq 7. We may further define the total normalized interbasin “x, 02862 —0.1231 —0.0833 —0.2526 —0.0371 —0.0024
interaction potgntlal of a structure by adding the correspondlng V?,§B 01958 —0.1327 —0.0893 —0.1820 —0.0296 —0.0030
nuclear repulsion term/ (S) = Vi, (S + 1/R;, and use it to int
construct the total normalized energy of the structure, such that p(1,1)  0.5000 0.5000 0.5000 0.5832 0.9027  0.9877
the molecular total energy is a weighted sum of the normalized P(2,0) 02500  0.2500  0.2500  0.2084  0.0487  0.0062
energies of the structures a All magnitudes have been defined in the text for a given structure,
exceptVe, Vi, andVx, which are the Coulomb, exchangeorrelation,

y m mo a_lnd pure exchange_ components of the interelectron repulsion, respec-
E(S = ZE'Se"(S) + zv L9 tively. All data are in a.u.
' o is known as deformation energi,. = Ea; — Eau, and it is a
E= S pSE®S (15) basic tenet of the IQA approach that deformation energies are
é small magnitudes in the absence of large charge transfers. In

IQA, binding results from a competition between (usually)
IV. Example. The H, Molecule repulsive deformations and overall attractive interactions. As
we can see, it turns out necessary s to be small that a
non-negligiblevéﬁ value be present. This is electron repulsion
within one basin, that in Fhas to be associated to the ionic
structures, since in the covalent one there is one electron in
each basinV’;f is then exclusively due to structu8g, and the
. . origin of the failure of the HF model at large distances is made
are equivalent and whose separatrix is the plane orthogonal toevident.p(z, 0) is fixed at 1/4 in the HF solution (see below),

the H-H axis that intersects the axis at its midpoint. All : o I -
calculations have been performed with our PROMOLDEN code, and therg Is a 25% p_robablllty of finding tif or S structures
at any distance that introduces a se\Mﬁé penalty. Even the

which will be soon generalized in order to cope with resonant _. . .
structures in multielectron systems. simplest CAS[2,2] solution allowp(2, 0) to vanish as thBag

As commented in the last section, Mas three possible distance increases, so the covalent structure is the correct infinite

resonant structures. If we choose the nuclei inAh® order, limit V\."th VQQ ~ 0'. . . .
these areS, = (1, 1),S = (2, 0), S = (0, 2), which clearly A similar analysis may be dohe for the interaction en_ergetlc
correspond to the covalent and the two ionic standard Lewis COMPonents. One of the most interesting termy 3 which
forms. Symmetry imposes tha&h = S, and all energetic may only result this time frpm the cova]ent strgctt&e ThIS.
magnitudes of both structures will be identical. We have selected "Umber tends correctly to its Coulombic contribution (which
three representative internuclear distanéag,= 1.4, 4.0, and N the infinite distance limit is Rag) in the correlated
6.0 bohr to evaluate the evolution of magnitudes from the description, but erroneously goes to Bgg) in the HF model.
molecular to the isolated atoms limit. Since our purposes are Ag@in, & look at the constap(l, 1) = 1/2 value clarifies this
illustrative, a simple 6-311G(p) basis set has been chosen exceplSSUe- A significant fact deserves (_1ue l;:on:~‘,|derat|on. It rggards
when explicitly stated. We wil first comment on the total energy the role of the quantum-mechanicef_ term at large dis-
decomposition provided by IQA and then we will present the tances. As we see, it tends to be indistinguishable from the total
energy partition at the structure level. interaction energy,\/ﬁf, in the CAS description. This only

A. 1QA Partition and General Comments. Table 1 gathers ~ means that all other classical interaction terd§; = V24,
the most important energetic magnitudes for the global IQA VﬁnB, andv’éB cancel among them, leaving non-classical behav-
partition, both at the HF and complete active space (CAS)[2,2] ior as the only source of cohesion at large distaiice.
levels. Just bearing in mind the idea of resonance in real space Let us proceed with the statistical features of the electron
helps rationalize many interesting facts partially put forward in distribution in relation with our present motives, kas no pure,
ref 22. If we start examining monocentric contributions, for equal-spin Fermi correlation, so at the HF level, i.e., without
instance, we immediately see that, despite considerable redistaking into account Coulomb correlation, all Fermi effects are
tributions in each quantity with respect to the infinite distance due to improper electron counting, or self-interaction. From the
limit, the self-energy of the hydrogen atom is very close to statistical point of view, the two electrons are independent
—0.5 Ep at the CAS level. The difference between the atomic objects in HF H, this behavior not being affected by internuclear
self-energy in a molecule and a reference (usually in vacuo) distance. At the density matrix leveda(ry, r2) = p(r1)p'(r2)/2,

Let us apply the above proposed decomposition to the-two
electron ground state dihydrogen molecule. We will examine
both Hartree-Fock (HF) and correlated models to pinpoint the
statistical signatures of electron correlation. Here, symmetry
determines the QTAM basins of both atordsand B, which
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wherep' = (N — 1)p/N = p/2 is the electrorrnumber corrected A _ *
density that integrates t8 — 1, not toN. Given that both atomic pr)IC = 2j;dr2 (1, 2P, 2)
basins are equivalent, the statistical independence of electrons
must lead to a binomial distribution. This is characterized by
the probability that a given basin be occupied by one of the
independent electronp,= 1/2, sop(1, 1)= 0.5, andp(2, 0)= and their symmetry equivalent ones when the free electron is
p(0, 2) = 0.25, as numerically found. The average basin in B and$ transforms intcSs.
population isINAJ= 0 x p(0, 2) + 1 x p(1, 1)+ 2 x p(2, 0) This set of densities are immediately recovered from the HF
=1. model of H, as p2(1,2) = p(1)p(2)/4 has separate electron
It is illuminating to examine the seffinteraction problem  coordinates. With thiso(r*)[C] = p(r*)[C2] = p(r)/2, and the
from the point of view provided by considering resonant €lectron density within basii, for instance, is partitioned
structures. In the standard textbook interpretation of the HF €qually into theS, andS; structures at any internuclear distance.
scheme, the problem is solved, as explained above, by properlyMoreoverp(S) = 0.5, as well ap(S,) = 0.25, are fixed weights
counting electrons, so th&l(— 1)/N = 1/2 factor introduced ~ thatallow us to writep(r*|Sy) = p(r) andp(r*|S) = 2p(r), which

by the inclusion of the FockDirac exchange transforms the clearly shows that there are 1 and 2 electrons within basin
incorrect Coulombic repulsions into the correct ones. Such a the covalent and ionic structures, respectively. Notice that some

p(rDIC,) = 2 fdr, W*(1, 2)¥(1, 2) (17)

view may be recovered from Table 1, akg = Vx (for no structure specific CGDMs vanish. For instanpg(f?, r3)[C2]
correlation exists in HF) turns out to be minus hel. This does not exist. N .
stands both for the intra- and the interbasin contributions. If = The energetic decomposition of the molecular energy into
we think in terms of structures/2 is only due t0S, S0 px(r’, structure components at the HF level is therefore already

r§|&) determines it (eq 12), and we can ask ourselves aboyt contained in Table 1, so we will only comment briefly on it.

~ i A — TA — TA AA _ JAA —
the CoulombidV2(S,) term that we may define withy(rA|S), For instance T = T(S) = TAS)2, andVey = Ver(S) =
a density which integrates to 2 electrons. The answer will have Ven($)/2. As a true independent electron model, the normal-
to be corrected again for the proper number of electrons, so thelZ€d kinetic energy or electremuclear attraction of the&

monocentric seffinteraction is as real a phenomenon as it may Structure is just twice that of a single electron. ANE =
be. Ve (S)/4, and adding the intrabasin components we may get

The situation is very different 3\75':5 is regarded. Now only the normahz&d gtomlc setfenergies for each structure. Rig
= 0.7 bohr,E_ is thus—0.6550 and—0.5272 a.u. for thé&s;

S, contributes, ang(r4|Sy) as well aspa(rB|S) integrate to self _ a
one electron in their respective basins. No self-interaction @nd S structures, respectively, arttley = p(S1) x Ese(S1) +
appears from computing repulsions with those densities, which P(S2) x Es.(S), as previously proven. It is interesting to
refer to different electrons. Before analyzing the contributions notice that the intrabasin Coulombic contributioff(S;) = 2

of each structure in depth, we may confidently suppose that Vi2(S;), so S behaves like an atomic HF scheme within the
both p;(rB|S;) and itsA counterpart will not depart in an essential  molecule, and we still need a selhteraction correction coming
way from the totalp. VA2 may then be seen as the repulsion from intra—basin exchange contributions. On the contrary,
between two non-self-interacting atomic densities that has to V’éB(Sl) = VQE(Sl), and the absence of self-interaction present
be weighted withp(1, 1), the probability that each electron in S, together with the statistical independence of both electrons,
occupies a different basin. Table 1 shows t‘bié'?p(l, 1) is an lead to a purely Coulombic interaction. Given the particularly
excellent approximation tvé\f. In this image, the FockDirac simple structure of the conditional_densities in the HF scheme,
exchange does not correct for the spurious self-interaction butthe atomic basins of are also basins gf(r4|Sy) and p(r*|S),

for the existence of resonant structures in which different number SO there are no problems with the hermitian charactenathin

of non-self-interacting electrons are located in each atomic basin. this approximation. o _

For each structure, electrons in different basins will now repel At the correlated level, the simplicity is lost. This, together
in a basically Coulombic manner, since correlations extinguish With the ordinary second-order density are all we need to
rapidly with distance in normal situations. We should then construct the CGDMs. Figure 1 displays a number of features
expect important correlation correctionithin basins but rather ~ 0f these densities &g = 4.0 bohr in a full configuration inter-
uncorrelated descriptions among basins. We may then say tha@ction (FCI) calculation. First, it is interesting to notice that the

interbasin exchange energieé,}B, are in fact resonance ener- Probability d_ensny of finding an electron as it moves a_ro_und the
gies. molecule with the other electron located within baBinis a

. . continuous function, equal ta(r)[C4] in A and top(r)[Cg] in
. B. Decomposition at the Structure LevelHaving only three B. At this elongated internuclear distance, characterized by a low
different resonant structures and two electrons, CGDMs, CG-

. . . - P(S), p(r)[Cs] is much smaller thap(r)[C4], but the small peak
PDs, and coarsegrained energetic magnitudes may be easily ; Py ;
obtained in H. Let us callC;. Cy, and Cs the condensations in B grows when decreasirigng, at a similar pace as the weight

leading 10S,, S, and S, respectively, upon considering free of the ionic structures. Second, the total molecular density
electrons. All CGPDs can be constructed from the data found depicted only in basi, is clearly dominated by th@ structure.

. Nevertheless, the traditional density increase in the bonding
in Table 1, ang(0?) = p(0B) = p(2*) = p(28B) = p(2, 0)= p(0, : ; ; ;
2), andp(1) = p(1®) = p(1,1). Similarly, we may use our region, one of the alleged signatures of covalent interactions,

. P las to derive diff t densities. Ol is clearly due to the contribution of the ionic structures. Actually,
previous formulas fo derive difierent densities. Lnly one WO 15 the possibility that two electrons be located in that bonding
electron CGDM exists

region, which in our basin separation correspondS;tandSs.
A similar analysis using other space partitionings, i.e., that
pory, 1)) = W*(1, 2)¥(1, 2) (16) provided by the ELF, would assign this density increase to the
electrons in the bonding valence basin.
since no condensed electrons remain. It can be condensed into The lower part of Figure 1 is particularly insightful. Here
the one-electron CGDMs we plot the conditional (normalized) densities associate$ to
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0.30 - - - TABLE 2: CASJ[2,2]//6—311G(p) Energetic Decomposition at
the Structure Level?
025 | N 4 B
[\ porcy POICS] S S
0.20 | ’ 1 Ras 1.4 4.0 6.0 1.4 4.0 6.0
Q 015 - / \ | GA 0.3483 0.4369 0.4922 0.2326 0.0320 0.0051
%‘ ) / \ KA 0.3889 0.4528 0.4958 0.1919 0.0161 0.0014
& | l\. | VAr’f —0.7293 —0.9096 —0.9897 —0.4988 —0.0741 —0.0083
‘ /o VAR 01629 0.0232  0.0021
0.05 | / \ 1 VA8 02997 02179  0.1632
o £ ) R V:f —0.3443 —0.2215 —0.1639 —0.2532 —0.0272 —0.0026
#0028 8 09 A0 28 3 A0 EA, —0.3810 —0.4727 —0.4975 —0.1033 —0.0189 —0.0011
f E —0.7348 —0.9448 —0.9950 —0.2074 —0.0339 —0.0027
03 . .
a2 Magnitudes and internuclear distances correspond to those in Table
03+ E 1, but we have included both tlgeandk forms of the kinetic energy
7\ operators. Here the first three columns correspond tcSthstructure
02 and the last three to th& one. BothE and E.,, are obtained with
e B8 L g-based kinetic energy values. All data are in a.u.
a O
E o L
S o2t The hermiticity problem of the kinetic energy operator
el manifests clearly in the correlated case, though the differences
' between they andk descriptions are not large. If we compare
01} ] the balance of th&, andS, components oK” and G* at Rag
b S, s ; ; — = 1.4 a.u. with those coming from the HF model, it turns out
T40 35 30 25 20 -15 -0 05 00 that the G* data are clearly closer to the half and half HF
r partition than those oKA. We will then useG, as is usually
Figure 1. One electron densities along the internuclear axis for the done when managing similar situations.
covalent and ionic structures in.Has obtained from a full configuration The evolution of the energetic componentsSjirand S, with

interaction FCI//VTZ(d, f,2p) calculation &g = 4.0 bohr. Nucleus  increasing distance is interesting. Rig = 1.4 a.u, the covalent
ﬁg;ﬁrlgc\?vt:?ﬂ?){ E)Eg-]o(ﬁfl’lhﬁ :g;da?]zct'ﬁﬁgtnr]pzletzéon?glzgljg%eeg’gty structure accounts for 64% the total molecular energy, though
’ 1. J— H = ©
p with dotted Ii?le within the (left) basin. Onlyp(r)[Cq] (long-dashed  P(S1) = 0-5832. This clearly means the(S,) < E(Sy). In fact,
line) is shown in theB (right) basin. The dotted vertical line separates both energies are1.2599 gnd—0.9952Eh, respectively. These .
the A and B basins. In the bottom figure we present the conditional covalent and ionic energies are in reasonable agreement with
probabilities ofS; (full line) and S, (dashed line) within basiA. They those found from other methods. Rsg increases, the energetic
integrate to one and two electrons, respectively. We have also contribution of the covalent structure becomes dominant. It must
superimposeq the total de'nsities of the frequtom (_short-dashed line)he taken into proper account, however, that the energetic
and the H anion (dotted line). All data in atomic units. decomposition proposed here does not come from a state
. . ) superposition of variational structures, like in the usual Heitler
and$; within basinA. Itis clear that the two electrons § are London description in which structures are mixed at the state
very asymmetrically distributed with respect to the nucleus, (ayefunction) level. If done so, no structure may have a lower
much more likely to be found in the bonding region than in the - gnerqy than the molecular ground state, and the minimal energy
rear nuclear part. As possibly expected, &helensity is almost ¢ the'|atter is interpreted in terms of resonance between the
|nd|st|ngwshab_le from that of a free H a_ltom, but |nt_erest|ngly states of each given structure. Our proposal comes from an a
enough,o(r|S,) is very close to the density of a hydride anion  y,steriori analysis of a system’s state vector and is compatible
near the nucleus. In the outer regions of this hydride ionic state, \yith a statistical mixture of different electron arrangements in
charge is pumped from the rear to the bonding region. It is reg| space. No variational restriction about each structure’s
tempting to rationalize this asymmetry in terms of the polariza- energy applies here.
tion induced by the nake proton. In fact, very simple attempts The normalized atomic seffenergies,E « provide ener-
to simulate this polarization by means of a point charge electric yeqtic counterparts to the atomic densitiessedepicted in the inset
field lead to a considerable enlargement of the region in which Figure 1. AtRag = 1.4 bohr, these are easily computed as
the S density resembles the polarized hydride. We should take _q g532 and—0.4957E, for the S, and S, structures, respec-
into account, however, that'Hs a weakly bound system very  yely. The covalent H atom is almost 100 kcal/mol more stable
difficult to simulate properly in a destabilizing positive field.  inan the free H atom, and this stability is due to an increase in
For the time being, we simply state tht|S) has clear features yinetic energy more than compensated by the large eleetron
that may be associated with a heavily polarized hydride. All of y¢leys attraction, which indicates tht|Sy) is noticeably more
these considerations stand true in a wide range of internuclearcompact than the free H density. The ionic Bnergy is higher
distances, though the distortions/polarizations increase With than the free H limit but lies 18 kcal/mol below the HF46
decreasin@ae. 311G description of the hydride. Its energetic balance is,
Table 2 contains the energy decomposition into resonant however, very different from that of a free Hwith KA(S) =
structures obtained from the CAS[2,2}//811G(p) calculations. 1.1161E, as compared with a HF/6311G kinetic energy of
Since in H intrabasin electron repulsions come fr@y» and 0.5741 a.u. These data are consistent with a very compressed
inter—basin ones frong,, the Vee terms are those of Table 1, H~ moiety at Rag distances near Hequillibrium. Similar
though now their interpretation is different. For instance, analyses may be done at the other internuclear distances. At
V(S is equal toVas in Table 1, though now it is the whole  Rag = 6.0 bohr, E5,(S)) = —0.4966, which is the free H
electron repulsion coming from structuge energy limit within 1 kcal/mol. Notice that all normalized
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magnitudes fo; near the dissociation limit suffer from a heavy quantum atoms approaéR? The decomposition of the energy

loss of precision, so they should be taken with care. into the covalent and ionic structures sheds light on the self-
It is interesting to compare energetic data across Table 1 andinteraction problem of interelectron repulsions, and the interbasin
Table 2. We can see, for instance, how YE(S) and V4 X(Sy) electron-electron potential energy, which is exclusively due

values are much more similar than the global numbers found to the covalent structure, has been shown to be free of self-
in Table 1. This is a sign of both the compactness of the interaction. Many energetic magnitudes in IQA acquire a new
o(r|Sy) density and the interference created in the eleetron sense when examined at the structure level. Some of them turn
nucleus attraction by the ionic structures. Many other facts are out to behave more classically when separated into structures,
easily rationalized by adopting a more or less classical image and their complexity at the global level turns out to be the result
of the resonant structures. In this regard, viﬁ(sz) value is of mixing quantities with different origins and trends.
not very far from the classical value computed for a HF H We think that this work is a first step toward a general theory
anion and a test proton separated by the internuclear distanceof resonance in real space, that may become a bridge between
which is 0.2977, 0.0245, and 0.00E} at Rag = 1.4, 4.0, and modern valence bond theory and the topological frameworks
6.0 bohr, respectively, the difference decreasing on increasingof the chemical bond. We are currently working to generalize
Rag. our computer codes to multielectron cases so that more chemical
It is slightly surprising that a simple CAS[2,2] description, examples may be dealt with.
which does include static but a vanishing amount of dynamic

correlation, gives rise to a considerable difference betwgen Acknowledgment. The authors acknowledge financial sup-
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